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This research program investigated signal processing problems encountered in high- 

resolution image formation. Reliable imaging of scenes with high resolution and high speed 

is an important and key part of any defense system. In some imaging systems, the image 

has to be constructed from linear measurements and convex constraints (such as upper and 

lower bounds on image sample magnitude, and support limits). We studied iterative, finite 

parameter reconstructions that lead to images that meet the constraints, match the data to 

within a pre-specified tolerance, and come closest to a given nominal. 

We addressed three different aspects of signal/image reconstruction, namely: 

1. Developing fast algorithms for high resolution signal/image reconstruction. 

2. Resolutions Analysis of signal reconstruction algorithms. 

3. Numerical and computational aspects of signal reconstruction viz. stability and regu- 

larization. 

Important results in each of the above three topics are summarized below. 

Summary of Important Results 

1. Fast Algorithms 

The standard approach to the problem of image reconstruction from linear measurements 

and convex constraints has been an alternating projections onto convex sets (POCS) algo- 

rithm, studied by Youla and others. The approach suffers from slow (linear) convergence, 

high computational cost and non-unique limits. We have developed a quadratically con- 

vergent iterative algorithm (Newton algorithm) for this problem. Central to the Newton 

algorithm is the derivative of the nonlinear projection operator onto a convex set. We ob- 

tained a new general mathematical result for the existence and construction of the derivative 

of the projection operator for a class of convex sets. This result was then used to give the Q 

Newton algorithm for the signal recovery problem. A salient feature of the .algorithm is the 

quadratic rate of convergence. 



We also studied the implementation aspects of the algorithm and developed a computation 

and memory efficient implementation of the algorithm using conjugate-gradient iterations 

within each Newton iteration. A remarkable feature of the algorithm with this implemen- 

tation, is that each iteration has similar computational complexity as an iteration of the 

POCS algorithm. The faster rate of convergence of the algorithm (as compared to POCS) 

thus enables us to compute high resolution reconstructions with fewer computations. The 

algorithm has been tested extensively on imaging examples and we have obtained extremely 

good performance. In many image formation schemes, 6 to 7 iterations seem to suffice, 

compared to the 100s of iterations required by classical methods such as POCS. 

2. Resolution analysis 

Resolution ability is the ability to reproduce fine details such as, narrow peaks or closely 

spaced peaks in a signal. The study of resolution is important, since understanding the 

relationship between resolution limits and the various components' of a recovery problem 

and algorithm, could help us design better data acquisition schemes and algorithms. 

The earliest definition of resolution limit is the Rayleigh Resolution Limit This definition 

is based solely on the observed data and not on any recovery algorithm. The definition is 

acceptable when there is no processing of the data to recover or enhance the features based 

on exploiting prior information. The Rayleigh limit is thus a lower bound on the achievable 

resolution. 

We find that where infinitely many noise-free measurements are available, the resolution 

achievable is in fact independent of the width of the sampling pulse and depends only the 

inter-sample distance. The Rayleigh limit, on the other hand, is dictated by the width of the 

sampling pulse. In the presence of observation noise, however, the notion of exact recovery 

has to be abandoned and a new measure of resolution is necessary. We define a new measure 

based on allowable levels of worst-case error, and find that the resolution limit depends on 

the method of regularization used in the recovery algorithm. 

In the more practical situation in which only finitely many noisy observations are avail- 



able, the worst-case error is unbounded and so we have to restrict the search to a smaller 

set of signals. In order to meaningfully describe resolution limits for the problem of signal 

recovery from finitely many noisy observations, we restrict the class of signals to the set of 

bandlimited and essentially timelimited signals, since it describes most signals encountered in 

practice. This set is characterized by the well known orthonormal family of functions called 

the Prolate Spheroidal Wave Functions and is known to be approximately finite dimensional, 

which enables us to seek reconstructions from a lower dimensional subspace of the space of 

bandlimited signals. Reduction in dimension causes an error in the reconstruction, which we 

call the intrinsic error. A second error is incurred while determining the parameters describ- 

ing the lower dimensional reconstruction. The reconstruction error is then the sum of these 

two errors. We show that the worst-case values of these two errors can be pre-computed for 

each choice of reduced dimension. The error computation provides both an optimal choice 

of dimension and a precomputed bound on the resolution ability of the algorithm. 

3. Numerical and Computational aspects: 

Most reconstruction problems are ill-posed. Therefore, regularization is needed for an 

approximate but stable computation of the solution. The truncated SVD approach is popular 

method of regularization. The selection of the proper rank is the main problem in this 

technique. We have developed a new rank selection strategy based on a bound on the noise 

energy alone. In the absence of bounds on the signal energy we enforce our belief that the 

signal energy cannot be large, by introducing a penalty on the solution in the worst-case 

(min-max) analysis. The rank is selected so that the worst case error with a penalty on 

the solution norm is minimum. This method of regularization was tested in bandlimited 

extrapolation problems and it gave excellent results. 
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Abstract 

Resolution analysis for the problem of signal recovery from finitely many linear 
samples is the subject of this paper. The classical Rayleigh limit serves only as a lower 
bound on resolution since it does not assume any recovery strategy and is based only on 
observed data. We show that details finer than the Rayleigh limit can be recovered by 
simple linear processing that incorporates prior information. We first define a measure 
of resolution based on allowable levels of error that is more appropriate for current signal 
recovery strategies than the Rayleigh definition. In the practical situation in which only 
finitely many noisy observations are available, we have to restrict the class of signals 
in order to make the resolution measure'meaningful. We consider the set of bandlim- 
ited and essentially timelimited signals since it describes most signals encountered in 
practice. For this set we show how to precompute resolution limits from knowledge of 
measurement functionals, signal-to-noise ratio, passband, energy concentration regions, 
energy concentration factor, and a prescribed level of error tolerance. In the process we 
also derive an algorithm for high resolution signal recovery. We illustrate the results 
with examples in one and two dimensions. 
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1    Introduction 

The problem of recovering signals from linear measurements arises in many applications, and 

several algorithms, linear and nonlinear, have been developed and analyzed for this problem 

[1,2, 3,4,5,6,7, 8, 9]. However, the fundamental question regarding the resolution ability of 

a recovery algorithm is often left unanswered. Resolution ability is the ability to reproduce 

fine details such as, narrow peaks or closely spaced peaks in a signal. The study of resolution 

is important; in many applications it is necessary for the reconstruction algorithm to have 

a certain minimum resolution in order to be effective. For example, consider the digital 

mammography application, where a 2-D X-ray profile is to be reconstructed from samples. 

With current sensor technology and physical limitations, the sampling operation amounts to 

2D pulse sampling with pulse width (A) at least 50 microns and sample spacing (r) at least 

50 microns, which limits the "resolution" obtainable from a single exposure to 50 microns 

or larger, i.e., details in the image that are narrower than 50 microns cannot be reproduced. 

The integration with a pulse of width 50 microns causes smearing of finer details, and the 

sample spacing of 50 microns can cause us to miss these details altogether. However, early 

detection of breast carcinoma requires that features of width 25 microns be reproduced in 

the image. The grain size of an X-ray film is small enough for these features to appear in 

the more conventional analog X-ray photographs. To make digital mammography equally 

useful for diagnostic radiology, resolution of at least 25 microns is required. More generally, 

the study of resolution limits is important since, it could help us assess the effectiveness of 

a particular algorithm, and compare different algorithms in a rational manner. Moreover, 

understanding the relationship between resolution limits and the various components of a 

recovery problem and algorithm, could help us design better data acquisition schemes and 

algorithms. 

The problem of resolution analysis is twofold: first, we need a meaningful measure of 

resolution ability, and second, we have to be able to analyze the performance of a recon- 

struction algorithm in terms of the defined resolution measure. The earliest definition of 

resolution limit is the Rayleigh Resolution Limit. It is defined as follows: 

Definition 1.1 (Rayleigh Resolution Limit) [10] If two equally strong point sources 

(impulse intensities), S or more apart, are reproduced as peaks with at least a 19% intensity 

dip, and if sources less than 8 apart are not reproduced as well, the resolution limit is said 

to be 5. ■ 

Equivalently, the Rayleigh resolution limit is inversely proportional to the main lobe width 



of the point spread function of the blurring (or sampling) kernel. This definition is based 

solely on the observed data and not on any recovery algorithm. The definition is acceptable 

when there is no processing of the data to recover or enhance the features based on exploiting 

prior information. The Rayleigh limit is thus a lower bound on the achievable resolution. 

We might be able to do better with clever signal processing that exploits prior information, 

but we should always be able to achieve at least as much resolution as specified by the 

Rayleigh limit. 

We find that where infinitely many noise-free measurements are available, the resolution 

achievable is in fact independent of the width of the sampling pulse and depends only the 

inter-sample distance. The Rayleigh limit, on the other hand, is dictated by the width 

of the sampling pulse. In the presence of observation noise, however, the notion of exact 

recovery has to be abandoned and a new measure of resolution is necessary. We define a 

new measure based on allowable levels of worst-case error, and find that the resolution limit 

depends on the method of regularization used in the recovery algorithm. 

In the more practical situation in which only finitely many noisy observations are avail- 

able, the worst-case error is unbounded and so we have to restrict the search to a smaller 

set of signals. In studying the problem of resolution in signal recovery Root et al. [11], [12] 

recognized the need for finite-dimensional approximations to overcome instability. They in- 

troduce the concept of an error number, which is defined as the mean-squared error averaged 

by the dimension of the approximating subspace. As dimension increases, the "detail" in 

the estimate increases but so does the error number. The authors thus bring out the trade- 

off between the achievable level of detail (i.e., resolution) and the error in reconstruction. 

However they do not quantify resolution (detail) and fail to provide resolution bounds. 

We appeal to the Fourier uncertainty principle to bring out the relationship between 

resolution (detail) and bandwidth. In this sense our is similar in spirit to the classical 

Rayleigh resolution limit, but is based on a prescribed tolerance of the relative error. 

In order to meaningfully describe resolution limits for the problem of signal recovery 

from finitely many noisy observations, "we restrict the class of signals to the set of bandlimited 

and essentially timelimited signals, since it describes most signals encountered in practice. 

This set is characterized by the well known orthonormal family of functions called the 

Prolate Spheroidal Wave Functions and is known to be approximately finite dimensional, 

which enables us to seek reconstructions from a lower dimensional subspace of the space of 

bandlimited signals. Reduction in dimension causes an error in the reconstruction, which 

we call the intrinsic error. A second error is incurred while determining the parameters 



describing the lower dimensional reconstruction. The reconstruction error is then the sum 

of these two errors. We show that the worst-case values of these two errors can be pre- 

computed for each choice of reduced dimension. The error computation provides both an 

optimal choice of dimension and a precomputed bound on the resolution ability of the 

algorithm. 

This paper is organized as follows: In Section 2 we formulate the signal recovery problem 

in a vector space setting. In Section 3 we analyze the resolution limits for the ideal situation 

of infinitely many noise-free observations and describe the effects of noise and regulariza- 

tion. Based on the results obtained, we suggest a method for improving resolution in the 

mammography application. In Section 4, which is the bulk of the paper, we examine the 

practical situation of finitely many noisy observations for resolution limits. We demonstrate 

the results in one and two dimensional examples. 

2    The Signal Recovery Problem 

We consider the problem of reconstructing ID continuous-index signals from discrete linear 

measurements. The results presented here can be easily generalized to multidimensional 

signals. We demonstrate the generalization by way of an example in Section 4. 

Let L2(R) be the space of finite-energy continuous-index signals with the natural inner 

product defined by 

(x,y)L,(R)= [x(tjy(ijdt, 

where the overbars denote complex conjugation. Let Bs be the subspace of all signals 

bandlimited to Ps = [^,f] and let B denote the orthogonal projection operator onto Bs- 

In practical terms, B is simply a ideal bandpass filter with a passband Ps = [=f-, f ]. Let 

X(tt) denote the continuous-time Fourier transform (CTFT) of x(t), 

and 

X(Q) = ?{x{t)} = f°° x(t)e-jatdt, 
J—oo 

We address the problem of recovering a signal from Bs by using discrete linear measure- 

ments. Every linear continuous measurement functional on L<i{R) can be expressed as an 



inner product with a measurement signal in L2(R) [13]. Let g{ be measurement signals 

giving measurements yd(i) as 

Let T be the linear bounded operator on Bs representing the measurement process. 

Then 
Tx = yd,    xe Bs, (2) 

where yd is the vector of measurements. If the number of measurements, p, is finite, yd lies 

in Cp, otherwise yd lies in l2(Z), the space of finite-energy discrete-index signals with the 

inner product   
(xd, yd)h = £ xd(n)yd(n). (3) 

We will use the subscript '<*' to identify discrete-index signals, their transforms, and discrete- 

time frequency responses. Let Xd € L-2([-ir,ir]) be the discrete time Fourier transform of 

xd 6 h(Z), 

Xd(u) = 1£lXd(n)e-jum,    w6[-7T,7r]. 
n€Z- 

Finally, the adjoint operator T* maps a vector vd 6 Cp or l2(Z) to a signal T*vd = 

X\ Vd(i)Bgi in Bs, a simple linear combination of the measurement signals. Here M denotes 
M 

either the index set {1,2, • • •, p} or Z. 

In the ideal situation of accurate measurements, the problem of signal recovery from 

linear measurements is equivalent to that of finding a solution to the linear operator (2). 

However, in practice, the measurements are corrupted by noise.  Let nj denote the noise 

vector, then 
zd = Tx + nd (4) 

and the signal recovery problem is that of reconstructing x £ Bs from Zd- 

' In the next section we consider the signal recovery problem where infinitely many mea- 

surements are available and examine the resolution limit of the minimum norm least squares 

solution to (2). We also describe the effects of noise on the resolution limit in this situation. 

The bulk of this paper, however, deals with resolution limits in the practical case of a finite 

number of noisy measurements, starting from Section 4 

3    Resolution Limit with Infinitely Many Measurements 

It is well known that if all signals bandlimited to [-f ,f] can be reconstructed perfectly, 

then two point sources spaced 5 apart will show up as distinct peaks in the reconstruction. 



This observation is a natural basis for our first definition of resolution. 

Definition 3.1 (Resolution limit under ideal conditions) A reconstruction algorithm 

is said to have an ideal resolution of 5 if signals bandlimited to [-f, f ] can be reconstructed 

perfectly under noise-free conditions. ■ 

This definition, unlike the Rayleigh definition, is based on the recovered signal instead of 

on the observed signal. Hence, the resolution limit will depend on the recovery strategy 

adopted. We will show next that we can do better than the Rayleigh resolution limit. 

When (2) admits no exact solution because of noise in measurements, a popular recourse 

is to seek the unique minimum norm least squares solution of (2) 

£MNLS = T*(TT*)*Zd, (5) 

where (TT*)t denotes the pseudoinverse of the composition TT*. From the description of 

the measurement operator and its adjoint it follows that, for vd € h(Z), 

(TT*vd)(i) = £ zd(k){Bgk,g^R). (6) 

jfce-2 

In many applications such as digital mammography and deconvolution, the measurement 

functions are uniformly translated versions of a basic sampling kernel/pulse g0: 

9k(t) = go(t-kT),  r>0. (7) 

With this assumption, (Bg^g^^R) = (Bg^Bg^^R) depends only on i - k and not on 

absolute time, and, hence, TT* is a convolution. The shift-invariant property of the sam- 

pling functions and the TT* operator is exploited to obtain frequency domain expressions 

for T, T*, TT* and the MNLS solution next. 

From (1) and (7) we obtain, 

*(„).£'(»^W^). (8) 
keZ 

where Yd(u) is the DTFT of yd and X(Q) and G(Q) are the CTFTs of x and g0 respectively. 

If x{t) = T*vd, then 

x(t) = (T*vd) (t) = £ vd(k) (Bg0) (t - kr) (9) 
k&2 

which in the frequency domain is 

X{0) = U(Q)G(Q)Vd(Qr). (10) 



Here II(fi) is the frequency response of the ideal bandpass filter for passband Ps = [-f-, f], 

X{Ü) is the CTFT of x and Vd(u) is the DTFT of vd. The TT* operation is equivalent to 

discrete-time convolution with a kernel given by 

h(k) = (Bgk, BgQ)^{R) = / g0(t- kT){Bg0){t)dt. (11) 

Thus, if vd = {TT*)zd then 
Vd(u) = ^(«JZ^w), (12) 

where 
F,H=En(^^)|G(^)l2. (13) 

JteZ T 

The (TTm)* operation is thus equivalent to discrete-time filtering with a filter of frequency 

response 

Jsfe *'(»)*» . (14) 
\ 0 Hd(u) = 0 

Combining the frequency domain expressions for T* and (TT*)t, we find that the minimum 

norm least squares (MNLS) solution £ = T*(TT*)^zd can be computed in the frequency 

domain as 
X(ß) = Ä(n)Zrf(nr), (15) 

wiiGrö 

Äl"J     \ 0 where Hd(Qr) = 0 

It is remarkable that the MNLS algorithm is a linear, time-invariant filter even in the 

absence of any restrictions/bounds on the sampling rate (£) or pulse width A. 

Conventional wisdom holds that the resolution 5 is limited by both r and A, i.e., that to 

achieve a resolution of 8, not only must the sample spacing r be less than 8, but the pulse 

width A must also be smaller than 8. The first condition is considered necessary, because 

the Nyquist sampling frequency for a passband [=f,j] is x (which means the minimum 

value of sample spacing r is <5). The second condition is deemed necessary because of the 

classical Rayleigh resolution limitations. Two point sources (Dirac delta functions) spaced 

8 apart are reproduced in the measured signal yd as a pair of superimposed copies of the 

measurement kernel ^o with a relative translation of 8. If the width A of kernel </o is less 

than 8, the two copies do not overlap and the two point sources stand out as resolved 

distinct peaks in yd. 

The following rather simple analysis of the MNLS reconstruction (15) shows that (at 

least in this ideal noiseless, infinite-data situation), the Rayleigh limit is irrelevant, and that 



even if the two point sources do not appear to be resolved in the measured signal yd, they 

may be resolved in the reconstruction x. The analysis shows that in this ideal situation, 

resolution is determined solely by the sample spacing (i.e., 8 = r) and is independent of 

pulse width A and even the shape of the sampling kernel go. 

If r is smaller than the Nyquist sampling interval for Bs = [TT,$] (or if g0(t) is ban- 

dlimited to [•=?, *]), then there will be no aliasing in Hd(u) in (13). In this case, 

w^^.w. 
Hd(u) = n(-)|G(7)| 

y„(«)  = xfyafy. (16) 

Therefore, 

{n(fl)Gfn)  _   1 
n(0)|G(h)p ~ G(ä) Sm* = zk    when n(n)G(0) * 0 

when n(fi)G(fi) = 0 

(17) 

and, assuming noise-free observations, 

t        _   j X(Q)    when n(fi)G(fl) * 0 (1$) 
A(-U)   ~   \o when n(fl)G(fl) = 0   " K    ' 

From this analysis it is clear that, under noise-free conditions and infinitely many sam- 

ples, the reconstructed spectrum X(Q) differs from the true spectrum, X(Q.) only at the 

frequencies at which G{Q) = 0. If g(t) is of finite duration, (A < 00), the Fourier Uncer- 

tainty Principle states that G(Q) cannot be bandlimited i.e. the set of frequencies where 

G(fi) = 0, has zero measure. Thus X(Q) = X(Q.) almost everywhere in this case, which 

means that the minimum norm reconstruction algorithm has an ideal resolution equal to r 

and not pulse width A. This result is independent of the shape of the sampling pulse, as 

long as its support A is finite. 

From the above analysis, we now see that it is possible to improve resolution in digital 

mammography and other applications in which the width A of the sampling pulse «fa is 

greater than the desired resolution, 8, by the use of multiple exposures based on staggering 

the sampling grid by r, r < 8, with every new exposure. This strategy is illustrated 

in Figure 1 for a ID problem with a square sampling pulse. For simplicity of analysis, 

we assume that the sample-spacing within an exposure is mr, where m is the number of 

exposures. Thus, after the m exposures are interleaved, we obtain uniform sampling with 
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Figure 1: The multi-exposure sampling strategy. 

spacing r which can be a small fraction of A. In a 2D application like digital mammography, 

this strategy requires multiple exposures with 2D translations of the collimators (relative 

to the object) between exposures. For instance, to improve resolution from 50 microns to 

25 microns in each dimension in this 2D problem, we will need 4 staggered exposures. A 

similar sampling strategy was suggested for tomography and deconvolution applications in 

[14, 15]. 

3.1    Effect of noise on resolution 

In practice measurements are usually corrupted by noise and, generally, only a finite number 

of measurements are available, which causes the resolution limit to be affected by the shape 

and width of the sampling pulse and by the signal-to-noise ratio (SNR). The effects of 

observation noise on the reconstruction will be considered next while we still assume that 

infinitely many measurements are available. 

If Nd(u) is the DTFT of nd, the noise vector, then in the adequately sampled case (i.e., 

T < 5) the MNLS solution in the frequency domain is given by 

*(«)+nfrfliy4     where n(fi)G(fi) # 0 (ig) 

where n(«)G(ß) = 0 

When the magnitude of G(Q) is small, the noise component (n(nf|G(n)p) becomes rela- 

tively large, which leads to a totally unacceptable and unstable solution. Therefore, regular- 

ization is required for an approximate but stable solution. A simple regularization scheme 

is to zero the solution whenever |G(£2)| falls below a certain value. The regularized MNLS 

solution in this case is 

XMNLS(&) ■I 

?r(fl) = { *(Q) + flfffliSftp     where |n(Q)G(n)| > M 
where |II(fi)G(Q)| < p • 

(20) 



Depending on the shape of the sampling pulse g0 (and its width A) and on the noise levels, 

the frequency bands in Ps where \G{Q)\ < fi may be large. In these bands, there is a total 

loss of information about the underlying signal. 

Another method of regularization is to add a small positive constant to the denom- 

inator of the MNLS solution (15). This approach is popularly known as the Tikhonov 

regularization method. The MNLS solution with Tikhonov regularization is given by 

xt = T*(TT* + fiB)-1yd. (21) 

In the frequency domain the solution is 

* (Q) - m^MZB. + _M*1    „>0. (22) Xt{n>- n(fi)|G(fi)|2+/x +n(n)\G(Q)\*+n ^>u K > 
The following example illustrates the two types of regularization schemes and their effects 

on the resolution limit. 

Example 3.1 Let x(t) be bandlimited to [-16TT, 16TT] with a spectrum as shown in Figure 2. 

Let the sampling function, go(t), be a square-pulse of width A = \ and let r = -5- = yg. 

Figure 2 shows a plot of IT(fi)|G(fi)|. With Nd equal to a constant p = 10~4 and a 

regularization parameter fi = 25/?, the two regularized solutions Xt and Xr are illustrated 

in Figure 2. m 

In the absence of multiple exposures (with r = A), the spectrum of X(Q) could have 

been recovered only up to frequencies in [=£, ^]. Because of multiple interleaved exposures 

(r = A/4), we are able to extract information at the higher frequencies as well. From 

Figure 2 it is evident that- Xr is zero over certain frequency bands. It is also clear that 

when the regularization parameter, /x, is decreased, the size of these missing frequency 

bands decreases; however, the contribution of noise to the solution is increased. Thus 

the parameter \i presents a trade-off between these two effects and must be chosen as a 

compromise between the two. The zeroing of Xr over these bands (however narrow) may 

be unacceptable in many applications, since it causes oscillatory behavior (often called 

ringing) in the time domain. With the Tikhonov regularization, it is observed that the 

signal component of the MNLS solution is approximate in the entire frequency region. 

However, there are no missing bands and the time-domain solution is smoother. Here as 

well, choice of /x is critical to the reconstruction and is usually made based on the SNR. 

Since in the noise-corrupted case, the signal cannot (in general) be perfectly recon- 

structed, a new measure of resolution is necessary that allows for imperfect reconstruction. 

We develop a measure of resolution based on the maximum tolerable worst-case error. 
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-16K        -12K 12K 16K 

Figure 2: Effects of the spectral truncation and Tikhonov regularization in the frequency 

domain.  true spectrum; with spectral truncation; - — with Tikhonov scheme; 

■ • -sampling kernel spectrum. 

It is obvious that the magnitude of the reconstruction error (even after normalization 

by signal norm) depends on the magnitude of the measurement noise and on the particular 

underlying signal. We therefore assume that the SNR.is greater than a given positive 

constant ^. In other words,, we assume that in (4), ||n<i||2 < »72||Tx||2. Therefore, we define 

resolution as follows. 

Definition 3.2 A certain reconstruction algorithm has ^-resolution of 8 or better if the 

worst-case normalized reconstruction error (over all x € Bs and all nj such that ||n<f|| < 

■q\\Tx\\) is no larger than €/, 

» 

IlliE < e' Mx e Bs; Vnd : ||nd||
2 < n2\\Tx\\\ 

Note that e'-resolution is defined for a recovery algorithm and not for the recovery problem. 

In order to lower-bound the V-resolution limit for a particular recovery algorithm, we 

require tight upper bounds for the worst-case normalized reconstruction error. As we shall 

see, in many situations the upper bound might trivially be 1, unless the feasible set of 

signals is restricted. For example, let S = {Q : \G(Q)\ < /*}. Consider a signal x € Bs such 
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that 

a «»)-:; TJ"" 
For this signal it is clear that Xr (ß) = 0 Vfi. Thus, if a: is not identically zero, the worst-case 

normalized error in this case is 1. A less trivial bound on the worst-case error might be found 

if 8 is increased or if we restrict the set of feasible signals by imposing constraints based on 

known signal properties, such as energy bounds, positivity, bounds on the derivatives, or 

spectral bounds. We will attempt to obtain this bound in the next section for the practical 

situation in which only finitely many measurements are available. 

4    Resolution in the Practical Situation 

In this section we analyze resolution limits for signal recovery problems with finitely many 

noisy observations. Let p be the number of measurements available. The measurement 

process as before is represented by the linear operator T : L2(R) -¥ Cp as 

(Tx)i = (x,gi),    i = l,2,...,p. 

The gi could be uniformly translated versions of a single measurement signal g0, as in (7), 

but it is not necessary for this analysis. 

The reconstruction problem is formulated as follows 

given T, S, and measurement vector yd € Cp, Und x e Bg such that Tx = yd- 

The set of all signals in Bg satisfying Tx = yd is a linear variety, V, with finite codimension 

p. Thus, there are an infinite number of feasible solutions if data-matching is the only 

constraint. The min-max optimal solution, which is also the minimum norm solution, is 

given by 

XMN   =   arflrmin||x|| 

=   T*{TT*)-lyd. 

The operator TT* is now simply apxp matrix whose ijth entry is (gj, gi). 

Since the true signal can be any member of V, the supremum of the normalized recon- 

struction error, ^"ifcff^, is 1. Thus our earlier definition of e'-resolution becomes mean- 

ingless, since for every yd and passband Pg = [=?■, f], we can find a signal x € Bg for which 
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the normalized reconstruction error is greater than the tolerable error. Hence, we have to 

restrict the set of admissible signals appropriately to bound the worst-case error. 

However, a finite number of measurements is often justified, because most signals en- 

countered in physical systems are essentially timelimited. Accordingly, we restrict our at- 

tention to these signals. 

Let T be a compact set (usually a union of possibly discontiguous closed intervals) in 

R. Let W : L2(R) -> L2(R) denote the windowing operator to I\ 

^o-{;wr- <23> 
Since (Wx,y) = (x, Wy) Vx,y € L2(R), W is a self-adjoint operator. A signal is said to 

be e-essentially time-limited to T if \\Wx\\2 > (1 - e)||x||2. Let Gt,s{T) denote the set of 

signals which are bandlimited to [=f, f ] and e-essentially timelimited to T, i.e., 

Gt,S(T) = {x€BS: \\Wxtf > (1 - e)||x||2}. (24) 

The set G^T) represents most signals encountered in physical imaging and information 

systems. Hence, we state the following definition of resolution. 

Definition 4.1 A reconstruction algorithm on concentration window T and concentration 

factor 1-6 with SNR > -7 will be said to have «'-resolution of 8 or better if Vx 6 Gtls(T) 

and Vnj s.t. \\nd\\ < ri\\Tx\\, 

llx-x||2<c/ 

lx||2     " 

The set Ge,s(T) has several interesting properties which can be exploited to determine res- 

olution limits. Many of these properties are characterized by an orthonormal family of 

functions called the Prolate Spheroidal Wave Functions (PSWFs), {&}£!, and by the as- 

sociated eigenvalues, {A,}?^ [16], [17]. The PSWFs corresponding to T and Ps are solutions 

to the following integral equation, 

^w=/r^^r*M*- (25) 

Properties of the PSWF and the associated eigenvalues have been widely studied. The 

following three properties of the PSWF are essential to the treatment of resolution limits 

with finite data: 
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1. <fo's are bi-orthogonal functions, i.e., for i ^ j 

(<f>i,<f>j)   =   0 

(WfaWtj)   =   0 

2. Xi > A2 > A3 • • • > 0, 

3. {<j>i}i^i form an orthonormal basis for B&. 

With G€j(T) as. the feasible set, the recovery problem becomes 

given T, 8 and the measurements yd € Cp, und x € Ge,s(T) such that Tx = yj. 

Since the resolution limit of a recovery algorithm is based on the worst-case relative error, 

our objective is to find an algorithm that will minimize the worst-case relative error. 

4.1    Lower Dimensional Approximation 

Consider any signal x € Ge,j(r) C Bs. Since the {«fo}^ form an orthonormal basis for Bs 

from property (3), we can express x as 

oo 

t'=l 

To recover x 6 Gejs(T), in general, we have to determine an infinite number of a,-, from a 

finite number (p) of observations. However, every x € Ge,s(T) satisfies "up > 1 - e, and 

hence we have the following condition on the coefficients at-, 

f>?A,>l-e. 

This condition suggests that we may be able to restrict our reconstructions to a finite- 

dimensional subspace of Bs (of dimension less than p) and still obtain low error recon- 

structions. The next theorem, a well-known result, shows that Gits(T) is essentially finite 

dimensional and that the PSWF optimally approximate £?«.,$ (r) [16], [17]. 

Theorem 4.1 (Landau-Pollak-Slepian) For any positive integer N, amongst all N- 

dimensional spaces SN, the space spanned by the first N PSWF, Sjy = span{(/>i , <fo, • • •, (J>N}> 

is optimal for Glts(T) in that it minimizes 

max     min     ,.""■■    • (26) 
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Moreover, the worst-case relative error can be expressed in terms of the eigenvalues associ- 

ated with the PSWF as 

E{SN) = {^   Wl-^Ax- (2?) 

E(Sff) is also called the N-width of the set Gt,s(T) or the intrinsic error at dimension N. U 

Thus, for a fixed dimension, r, the subspace spanned by the {<f>i}ri=i minimizes the worst- 

case relative error. Moreover the worst-case relative error E{Sf) decreases with r. Thus it 

would seem that, given p observations, the best choice of a lower dimensional subspace to 

approximate Gt,s(T) would be 5* = span{<£i, • • •, <t>v). This choice would lead to p equations 

in p unknowns. Unfortunately, the p parameters required to describe the reconstruction from 

St cannot be determined exactly from the observations yd for two reasons. First, yd are 

noise-corrupted in practice. Second, the observations yd are linearly related to z € G€,s{T) 

and not to the projection xp of x onto 5*. Thus, an additional error will be incurred in 

determining the parameters that describe the lower dimensional approximate. We next 

derive an expression for this error and its worst-case value E(r) for a fixed dimension r. We 

suggest choosing r to minimize E(Sf) + H(r). 

4.2    Worst-Case Error Analysis for Subspace Selection 

Consider the reconstruction based on an r-dimensional approximation of Ge,s{T), where 

r < p, and let xr be the projection of x onto Sf. Then, 

r 

Xr = Y^Qi(t>i (28) 
«=1 

oo 

and the approximation error er = x - xr =   ^ oti4>i- In this section, we study the effect 
«=r+l 

of measurement noise and approximation error er on the estimate of {a,}i=1 from measure- 

ments yd- The measurements yd are linearly related to x and corrupted by noise nj: 

yd   =   Tx + nd 

=   Txr + Ter + nd 

r 

=   Ara
r + {Ter + nd), (29) 
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where Ar is a p x r matrix with Ar(i,j) = (<f>j,gi), ar = (ax,---ar)
T. We will assume 

that the columns of Ar are linearly independent. If they are not, the worst-case error is 

unbounded. The LS solution of Tx = yd, x € Sf, is determined from the MNLS solution 

of Ara
r = yd, which is 

ar   =   Ajyd 

=   ar + A${Ter + nd), 

where AI = {A**Ar)~
xA?. Thus the reconstruction is given by 

ir = £ä^t- (30) 
j=i 

and Cr = xr - xr = ^(^ - a,)<fo is the additional error incurred in determining the a,- 
t'=i 

parameters. The error term, CD has contributions from both Ter and measurement noise 

nd. 

Thus the total reconstruction error is 

|x-ir||
2     =     ||x-Xr + Xr-£r||2 

=     ll«r+Cr||2 

-   ||er||2 + ||^r||2   sinCe er _L Sf and obviously Cr € S*. 

A pictorial representation of these error terms is given in Figure 3. We seek an upper bound 

Figure 3: Error terms. 
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on ll*-fdl2. From Theorem 4.1, it is clear that Va; 6 Ge,5(T), 

All that remains to be done is to upper-bound ^j^. This error term can be interpreted 

as a penalty on complexity. The complexity in this case is the dimension of the subspace. 

Recall that Cr = £](<*; - <*«)& and that dr - ar - Al{Ter + nd). Hence, 
t=i 

||<r||
2   =    IK-a«-||2 

=   ||At(Ter + nd)||
2 

<    ||Aptrer||
2 + ||Artrt(i||

2 + 2||ArtTer|| ||4m||, (31) 

with equality achieved when A$nd is collinear with A*rTer. If a lower bound (^r) on SNR 

is known, then 

\\nd\\2   <   V2\\Tx\\2 

<   V2<Tmax(TT*) \\x\\2, 

with equality achieved when x is the singular vector of T that corresponds to its maximum 

singular value y/<rmax(TT*). Now all that remains to be done is to obtain a tight upper 

bound on l^fj^HI over x € Gtls(T).   A loose upper bound may be obtained by using 

||-<4rTer|| < ^""'u7)^\\er\\, but we can achieve a better bound because er has less than Ar 

of its energy in V. Mathematically, our objective is to find 

sup || f) <*t-4r0,-||2. (32) 

This is a nonlinear infinite programming problem, and in general we can seek only approx- 

imate solutions. We devote the remaining of this section to that task. We first show that 

under mild conditions, the problem can be approximated by a finite variable nonlinear pro- 

gramming problem. We then apply well-known techniques to solve the problem. We start 

with the following definition. 
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Definition 4.2 An observation made with a measurement functional, g, is in the concen- 

tration window, T, if support(g) C T 

Lemma 4.1 [18] The eigenvalues {A,} associated with the PSWF corresponding to a pass- 

band [=j-, f ] and a compact concentration window T axe absolutely summable and 

2 
Ajfe = i>=!/<«• (33) 

CO 
A 

Lemma 4.2 Let x € Ge,*(r) with x = £ ak<f>k and ||z||2 = ££=1 a| = 1. Let eN =    £   akcf>k 

If all the measurements are taken in the concentration window, T, i.e., every # has a sup- 

port inside the concentration region T, then there exists a finite number M such that for 

every positive integer N, 

\\TeNf < M( f)   Afc),    - 

and  lim  \\TeN\\2 = 0. In fact, \\TT*\\ will serve as M. ■ 

Thus as N becomes large the contribution of Tejv becomes negligible in the error. 

Theorem 4.2 Let 7 > 0 and the rest of the assumptions be as stated in Lemma 4.2. There 

exists a positive integer N independent of the choice ofxe Ge,s(T) such that 

N 
UtTer\\ - ||  £ aiAjTfrW < 7. (34) 

i=r+l 

Furthermore, 

sup      iMM=7+ sup ||  £  o.-4r*||. (35) 
*€Ge,*(r)     INI £*ia?-l        «-r+1 

Proofs of Lemma 4.2 and Theorem 4.2 can be found in the appendix. 

Theorem 4.2 shows that the solution to the infinite programming problem in (32) can 

be approximated closely by a sufficiently large finite variable problem. Let N, sufficiently 

large, be chosen, let HN = [hi,h2, • • • ^N] be a p x N matrix with columns hi given by 
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JO l<i<r 

* ~ 1 Ajr&   r + 1 < i < N 
(36) 

and let Aw = diag([A1?A2,.-.,AJV]). Then a bound on \\A?lTer\\ can be obtained by com- 

puting 
ror =      max      \\HNaN\\ 

DAL-W||2-1-« 

(37) 

llo*ll=l 

A popular method for solving this nonlinearly constrained quadratic program is the sequen- 

tial quadratic programming method, [13], [19]. 

Let br = (j + mr)
2 and define the noise contribution factor p2 = <7'T"*|(TT*?.    Then 

min 

\\4Terf < br\\x\\2 and from (31), 

HCrll2    <    \\AtTerf + \\AUd\\2 + 2\\AtTer\\\\Atnd\\ 

<     (h   I  <Wrr*)n2 , » l*ma*(TT*)   ,,  \      ||2 

=      (br + ptf + Zy/brPWnxlf 

A      _, 
=    S(r)||«|p, (38) 

where E(r) = br+p2.n2 + 2y/brp
2.r}2. Hence, we have the following procedure for determining 

S(r), using the PSWF, <fc, the corresponding eigenvalues A,-, and an acceptable value of 7 

For each candidate dimension r, 

• construct the p x r matrix Ar = [TfaTfa • • -T<j>r] and compute its smallest singular 
value, <rmin. 

• Find the smallest integer N for which 

2    72 

&Jr       CJ \\TT* 

• Construct HN as in (36), and let AN = diag([A1,A2,...,XN]).   Solve (37) by the 

sequential quadratic programming method and let br = (7 + mr)
2. 

S(r) = br + p2
rn

2 + 2y/brp
2n2 = (y/b~r + Prn)2. (39) 
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Thus a bound on the worst-case normalized error, S(r), can be obtained by the sum of 

the intrinsic error and a bound on the worst-case ||Cr|| , i-e-> 

e(r) = min(l,E(55) + E(r)). (40) 

Thus, to ascertain whether a resolution of 5 can be achieved given a set of p measure- 

ments, we first compute the bound on the worst-case normalized error bounds for each 

dimension r ranging from 1 through p using the PSWF corresponding to P$ = [=?-, f ] and 

we determine the dimension r* which gives the smallest error. If the worst-case error for this 

dimension is below the allowable error, we can claim that a resolution of 5 can be achieved 

with the given set of measurements and noise level. 

Remarks: 

1. As a consequence of the above analysis we have a new algorithm for signal recovery 

based on dimension reduction guided by the bound on the worst-case reconstruction 

error. 

2. The worst-case error-bound given by (40) does not depend on the data yd. It depends 

only on the sampling functions, git the bandwidth, ^, the sample spacing, r, the 

noise level, r], and the choice of the dimension, r. Thus, the selection of the dimension 

and the determination of resolution can be made (off-line) before the measurements 

are taken. 

3. Our analysis and definition of resolution are based on worst-case errors in a determin- 

istic framework. Therefore, in general the reconstruction error can be expected to be 

lower than the predicted value. 

4. The analysis holds true for all sampling patterns. Hence g,, the ith measurement 

function, does not have to be a shifted version of a single measurement function gQ. 

The only restriction is that the support of each gt lies inside the concentration window, 

r. 

5. We have assumed essential timelimitedness and strict bandlimitedness in our treat- 

ment, which can be easily changed to essential timelimitedness to T and essential 

bandlimitedness to P. The PSWF will still be the optimal sequences, [20] and all the 

results will still hold true, with minor modifications. 

' 6. The PSWF have been studied in the classical setting of ID signals with lowpass 

passband and contiguous concentration intervals. The three relevant properties of the 
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PSWF and the dimensionality theorem can be generalized to the more general setting 

of mD signals with P and T discontiguous. They follow by expressing the integral 

equation, (25) as a linear operator equation, as follows [21], [22] 

WBWi>i   =   \i1>i (41) 

Xifr   =   BWj>i ' K   ' 

Recognizing that the Vi are the eigenvectors of a positive semidefinite operator with 

eigenvalues A,-, the following three properties of the PSWF which are essential to this 

analysis become obvious: 

• the <fc's are biorthogonal functions, i.e., for i ^ j 

{<f>u<j>j)   =   0 
{W<t>uW^)   =   0 

• Aj > A2 > A3 • • • > 0. 

• {&}£i forms an orthonormal basis for Bp, the space of finite-energy signals 

bandlimited to P. 

Since the dimensionality theorem uses only these three properties, it can be generalized 

as well. 

4.3    Implementation Details 

In practice, all integrals have to be computed using numerical approximation methods. We 

use simple summation after discretizing functions on a fine grid. With discretization, the 

PSWF computation of (41) becomes an eigenvalue-eigenvector computation followed by 

low-pass filtering [23]. Constructing the entries of the matrices Ar, HN and TT* requires 

computation of integrals and is also achieved by discretization and summation. 

In the 2D case, if the passband is square, the kernel in the integral equation, (25), 

describing the PSWF becomes separable. If in addition the concentration region is also 

square, the double integral in (25) becomes 

/i*$fc(t,s)= /     /     —P—r1—fr—r^^k(n,T2)dT1dr2,        42) 
^*   *v    ;     J-T/2J-T/2    ir(t-n)       7r(t-r2) 

where $* is the kth 2D PSWF with associated eigenvalue /;*. If the fc are the ID PSWF cor- 

responding to 8 and T = [-T/2, T/2], then it is clear that for each i,j, $(t, s) = <ßi(t)<f}j(s) 

satisfies (42) with /i = AjAj- Thus after discretization, if we represent each 2D PSWF 

as a long ID vector of columns stacked one below the other, then the 2D PSWFs can be 
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computed as Kronecker products of corresponding ID PSWFs taken two at a time with 

eigenvalues equal to the product of the corresponding eigenvalues. 

We next illustrate these results and the computational details in two examples. The 

first example is in a ID setting. The second example is in a 2D setting to illustrate the 

applicability of the results to multiple dimensions. 

Example 4.1 (ID setting) Consider reconstruction of ID signals that are bandlimited 

to [-47T,47r] and have at least 99.5% of their energy concentrated in [-2.0,2.0], from 19 

measurements taken with shifted unit rectangular pulses of width \ and interpulse distance 

(stagger) \. Thus 8, T, and € are \, [-2.0,2.0] and 0.005 respectively in the definition of 

Gt,s(T), while p and r are 19 and \. The sampling functions are 

9k(t) = 9o(t --)    AT = 1,2,... 19, 

where 

■{! 
,A     ,  .   0<f<0.5 

*>(*) = 1  n   else 

Note that the width of the sampling pulses is ± = 2S: Thus the Rayleigh resolution limit 

is 25. Let the error tolerance be 10%. We will see that, at an SNR of 40dB, a resolution 

limit of r = \ (better than the Rayleigh limit) can be achieved by the proposed algorithm. 

The nonlinear programming problem of (37) is solved by using the sequential quadratic 

programming method. The intrinsic error E(Sf), the parameter estimation error without 

noise br, the noise contribution factor pr, are computed for each dimension, r, for which 

E(S?) < 1. The values are tabulated in Table 4.1 along with 0(r) = E(Sf) + (V£ + /V?)2 

for SNR of 32 dB and 40 dB. From the table we observe that, with a 40dB SNR, the 

optimal dimension for this signal recovery problem is 15, and the worst-case normalized 

error is bounded above by 0.0531. In fact, using (39, 40), we can show that with a 10% 

error allowance, a resolution of at least r = 0.25 can be achieved by the above algorithm 

whenever the SNR is greater than 32dB. As remarked earlier, all these computations can 

be done off-line, since they do not depend on the actual observed data. 

We now test the reconstruction algorithm using the precomputed optimal dimension of 

15 on a specific signal, 

, .      /sz'n(0.47Tt)\2 , „   sin(O.bri) 
•W-Hirt)   +0.2-^ricOS(3.5^). 
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Table 1: Intrinsic error, noise factor and total error versus dimension. 

r E(S?) br noise-factor 0(r) 9(r) 
Pr SNR=40dB SNR=32dB 

13 0.2203 0.1905 4.3953 0.4511 0.5188 
14 0.0379 0.0430 5.4552 0.1065 0.1561 
15 0.0100 0.0189 7.0128 0.0531 0.1078 
16 0.0046 0.0338 9.4899 0.0823 0.1819 
17 0.0034 0.0788 13.2808 0.1744 0.3788 
18 0.0032 0.1103 17.6118 0.2615 0.5998 
19 0.0031 0.1124 27.8416 0.3797 1.0000 

A plot of the signal is shown in Figure 4 (a). The highest frequency in x(t) is 3.6 radians. 

Note that x(t) is a low frequency signal with a low energy, high-frequency ripple. The 

frequencies are selected in order that the low-frequency component falls below the Rayleigh 

limit and, hence, is captured by the observations, whereas the high-frequency ripple is much 

above the Rayleigh limit and thus is not seen in the observations (Figure 4 (b)). A high 

resolution reconstruction should resolve the high frequency ripple, also. Since x(t) has 99.69 

% of its energy inside the concentration interval [-2.0,2.0], i.e., e = 0.0031, it belongs to 

the set G€,s(T) considered in this example. We take 19 observations in the concentration 

window with shifted versions of the sampling function described by (4.1). The observations 

are shown in Figure 4(b). Note that the high-frequency ripple is completely lost in the 

observations. 

The reconstruction, x, is computed using the algorithm with precomputed dimension 

of 15. It is also depicted in Figure 4 (a). The normalized error for this reconstruction, 

(llf,~|ll)2, is computed to be 0.0068, which is much less than the worst-case error bound of 

0.0531. ■ 

We now consider an example in two dimensions. 

Example 4.2 (2D setting) Consider the reconstruction problem for 2D signals that are 

bandlimited to a square passband Ps = [-2*, 2*r] x [-27T, 27r] and have at least 99% of 

their energy inside the square region [-2.5,2.5] x [-2.5,2.5] from 121 measurements. The 

measurements were taken using pulse sampling functions with a square region of support of 

width 1 and an intersampling distance of \ in each direction. Since the sample spacing {\) is 

smaller than the sampling kernels' width (=1), this sampling strategy requires interleaving 
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Figure 4: Reconstruction of the test signal using the optimal dimension determined by the 

worst-case error analysis. The SNR is 40db. (a) signal, x(t); reconstruction, x(t) 

(b) + Observations. 

of multiple (four) staggered exposures as in Figure 1. The sampling functions are 

/ k 
9l,k{^s)=9o(t-^,s-^)    f, k = 1,2,... 11, 

where 

*('»•>-{ 0   else 
1   0 <*< l,0<s< 1 

With this sampling kernel, the Rayleigh limit will be 1 in each dimension. Let measurements 

be taken from the concentration window with r\ = ^. This value of 77 corresponds to an 

SNR of 40 dB. 
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The nonlinear programming problem of (37) is solved using the sequential quadratic 

programming method, and E(S*), E(r), and 0(r) are computed for each dimension r for 

which E(Sf) is less than 1.   These values are plotted in Figure 5.   From the figure we 
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Figure 5: Intrinsic error, E(r) • • • •; parameter approximation error, E(r) 
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-; total error, 

observe that the optimal dimension for this signal recovery problem with a 40dB SNR is 

any dimension between 81 and 89. The worst-case normalized error in the noisy situation 

(40dB SNR) is 0.1326. Thus, if an error of 13.5% is tolerable, then a resolution of r = 0.25 

can be achieved by the above algorithm. 

Now consider a specific signal in Gt^(T): x(t,s) = h(t)h(s) with 

L/ N     n*e /sin(0.2fl-m2 , n nesin{0.2irt) 

A meshplot of the x(t, s) is shown in Figure 7. As in the ID case, the signal is comprised of a 

low-frequency component with a high-frequency ripple. The observations are four exposures 

with stagger, and they are as shown in Figure 6. The interleaved observations are also shown 

in Figure 6. The reconstruction using dimension 81 is shown in Figure 7. The relative error 

is computed to be 0.0179, which is much below the computed upper bound. ■ 
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5    Conclusions 

A resolution analysis for signal recovery from finitely many discrete, noise-corrupted, linear 

measurements is presented. A new measure for resolution is introduced, which is more 

appropriate than the Rayleigh resolution limit for current signal recovery algorithms. This 

resolution measure is based on a prescribed tolerance of relative error in the reconstruction, 

and unlike previous definitions is able to bring out the extent to which time or spatial domain 

features can be recovered by an algorithm. The computation of resolution limits reduces 

to the computation of the worst-case relative error in the recovered signal. By suitably 

constraining the class of feasible signals, the worst-case error is expressed as the solution of 

a finite-variable nonlinear program. The analysis and examples show that details finer than 

the Rayleigh resolution limit can be recovered by simple linear processing even in practical 

situations with finite, noise-corrupted data. In the process, we derive an algorithm for high 

resolution reconstruction (from linear observations) and show how one can precompute 

worst-case error bounds and the resolution limit for the algorithm. 

Appendix 

Proof of Lemma 4.1: Since all the measurements are taken inside the concentration 

region, Tx = TWx, Vx € Gt,5(T). Therefore, 

\\TeNf   =   ||   £   a*7>fc||
2 

k=N+l 

=   ||T   £   *kW<t>k\\2 

k=N+l 

<  «T2-II f; <*l\\W<t>k\\2 

k=N+l 

<   M   J   At   where M = ||TT*|| 
k=N+l 

|2 = 

Proof of Theorem 4.2: Let <rmtn > 0 be the smallest singular value of Ar. By Lemma 4.1 

Lemma 4.1 and property (2) of the PSWF together show that  lim  ||Tejv||2 = 0. 
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/T2     -V2 

it is possible to choose N such that    ^   Xk < ..^„i. • Then, 
k=N+l " " 

Il4r*|| = 

p < 

=r+l «=W+1 

£ «4T*|| + ||4Te*r|| 
=r+l 

f; a.-4r^-|| + ||4lllir^|| 
=r+l 

=r+l <Tmm 

X; «,-4^11+7 

M   Y   ^i     (^y Lemma 4.2) 

(43) 
t=r+l 

Next, 

sup 
*eGt,s(T) Ml 

sup       ii f; <*4r&| 

JV 

< sup ||  £ at-Ajr^|| + T    (from 43) 

JV 

< sup ||  £ a,-4r^||+7 

W 

(44) 

(45) sup ||  £ O,-4T&|| + 7 

InequaHty (44) Mows from the fact that the set Si = {a : ££i a? = 1; E,~i a?(l - A<) < 

e} is contained in the set S2 = {a : EiL <*i = IjEfei0^1 ~ A«) ^ €) and hence the 

supremum over 52 is greater than the supremum over Si. Equality (45) follows because 

II EÜr+i <XiArT<f>i\\ is a convex function in a, and a convex function maximized over a 

convex set achieves its maximum at the boundary of the convex set. ■ 
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(a) (b) 

(c) (d) 

W 

Figure 6: Observations: (a), (b), (c), (d) Four staggered blurred 2D signals, (e) interleaved 

observations. 
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True Signal 

Figure 7: Signal, x(t,s), and reconstruction, x(t,s). 
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Figure 6: Observations: (a), (b), (c), (d) Four staggered blurred 2D signals, (e) interleaved 

observations. 
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